# The System Niobium Pentoxide-Phosphorus Pentoxide 

ERNEST M. LEVIN and ROBERT S. ROTH<br>National Bureau of Standards, Washington, D.C. 20234

Received January 15, 1970


#### Abstract

A partial phase diagram of the system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ has been determined experimentally, using the quenching technique and identifying the phases by X-ray powder diffractometry. The major phase, $\mathrm{NbPO}_{5}$, has a melting point above $1650^{\circ} \mathrm{C}$. It transforms at about $1253^{\circ} \mathrm{C}$ from a low-temperature, tetragonal phase to a high-temperature, monoclinic phase, isostructural with $\mathrm{TaPO}_{5}$. The $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ phase shows a limited solid solution range and melts incongruently at $1435^{\circ} \mathrm{C}$. The eutectic between $9: 1$ and $\mathrm{NbPO}_{5}$ is at $1365^{\circ} \mathrm{C}$ and 67 mole $\% \mathrm{Nb}_{2} \mathrm{O}_{5}$. At 96.4 mole $\% \mathrm{Nb}_{2} \mathrm{O}_{5}$ another phase was found, stable between $\sim 1340$ and $1420^{\circ} \mathrm{C}$ and isostructural with the 9:1 phase. A new monoclinic phase, " $22: 1$ " ss was found, with a limited stability field in both temperature and composition. It is most likely composed of $3 \times 3$ and $3 \times 4 \mathrm{ReO}_{6}$-type blocks of octahedrally oxygen-coordinated niobium. In the subsystem $\mathrm{NbPO}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ liquidus values could not be determined even in sealed Pt tubes because of reactivity and high vapor pressure of $\mathrm{P}_{2} \mathrm{O}_{5}$. One compound was identified of probable composition $\mathrm{Nb}_{2} \mathrm{O}_{5}$. $2 \mathrm{P}_{2} \mathrm{O}_{5}$, with pseudocubic symmetry and melting incongruently at about $1025^{\circ} \mathrm{C}$. X-ray powder diffraction data and unit cell dimensions are listed for the phases.


## I. Introduction

Although no previous phase diagram for the system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ was found in the literature, a number of investigators have prepared niobium phosphate compounds by wet and by solid state reactions and have studied them by chemical analysis, by single crystal and powder X-ray diffraction, and by infra red absorption. The compound $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ has been most extensively studied: first by Hahn in 1951 (1) followed by Kurbatov and Demenov (2), Haider (3, 4), Brown and Hummel (5), and finally by Longo and Kierkegaard in 1966 (6). Another compound composition unequivocally established is $9 \mathrm{Nb}_{2} \mathrm{O}_{5}$. $\mathrm{P}_{2} \mathrm{O}_{5}$. Waring and Roth (7) presented the indexed powder data in 1964, and Roth et al. (8) determined the structure by single crystal analysis in 1965. Haider (4) who has made the most complete study to date on the niobium phosphates also reported the compound $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{5}$. Two other reported compounds whose existence have not been verified in the present study are $2 \mathrm{Nb}_{2} \mathrm{O}_{5}: \mathrm{P}_{2} \mathrm{O}_{5}(2,9)$ and $3 \mathrm{Nb}_{2} \mathrm{O}_{5}: 5 \mathrm{P}_{2} \mathrm{O}_{5}$ (10).

In addition to clarifying some of the inconsistencies in the reported data, we had two other objectives. One was to determine if liquid immiscibility existed in phosphate systems, although
subsequent to the start of the experimental work, it was concluded that immiscibility in binary phosphate systems was either non existent or very rare (11). The second objective was to apply the block principle of multiphase formation as developed by Roth and Wadsley (12, Part IV) to the niobium phosphate system.

## II. Sample Preparation and Test Methods

Starting materials for the preparation of mixtures consisted of high purity niobium pentoxide and a commercial preparation of nitrogen-coated $\mathrm{P}_{2} \mathrm{O}_{5}$, which consisted of agglomerates of hexagonal crystalline phosphorus anhydride coated with an ammonium polyphosphate. The $\mathrm{Nb}_{2} \mathrm{O}_{5}$ was part of the same batch used in previous studies of the systems $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{B}_{2} \mathrm{O}_{3}$ (13) and $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{GeO}_{2}$ (14), with a reported melting point of $1485^{\circ} \mathrm{C}$. It contained the following impurities when examined by the general qualitative spectrochemical method: Si less than $0.1 \%$; $\mathrm{Fe}, \mathrm{Sn}, \mathrm{Ti}-0.001-0.01 \%$; Ca, $\mathrm{Mg}-0.0001-0.001 \% ; \mathrm{Cu}-$ ? Spectrographic analysis of the $\mathrm{P}_{2} \mathrm{O}_{5}$ showed: $\mathrm{Ba}, \mathrm{Fe}, \mathrm{Mg}$-less than $0.001 \%$.

Calculated amounts of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ sufficient to yield $5-\mathrm{g}$ batches, on an ignited basis, were
weighed into plastic containers and blended with a high-speed mechanical mixer. As the coated $\mathrm{P}_{2} \mathrm{O}_{5}$ was relatively nonhygroscopic, it could be conveniently and accurately weighed.

The mixtures were formed into disks 16 mm in diameter by pressing in a mold at approximately $20,000 \mathrm{psi}$. The disks were placed in covered platinum crucibles and heated slowly ( $1^{\circ} / \mathrm{min}$ ) to the calcining temperature. The fired disks were ground in an agate mortar, remixed, pressed, and given a second heat treatment at a higher temperature. The complete process of grinding, pressing, and heating was repeated a third time. Temperatures of the three calcinations ( $10-\mathrm{hr}$ durations) for mixtures containing 50 mole $\% \mathrm{P}_{2} \mathrm{O}_{5}$ and greater were 300 , 400 , and $600^{\circ} \mathrm{C}$. Mixtures higher in niobia than 50 mole $\%$ were calcined for 5 hr at 600,800 , and $1000^{\circ} \mathrm{C}$, respectively.

The formulated compositions were analyzed for ignition loss and niobia by the Analytical Chemistry Division of the National Bureau of Standards. Except for the two compositions richest in $\mathrm{P}_{2} \mathrm{O}_{5}$, analyzed values were within 1 mole $\%$ of the formulated ones. The following compositions were formulated from $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and one of the analyzed
mixtures : $97.5 \% \mathrm{Nb}_{2} \mathrm{O}_{5}, 96.4 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$, and $92.5 \%$ $\mathrm{Nb}_{2} \mathrm{O}_{5}$ (see Table I and footnotes 8 and 9). For verification of the existence of solid solution in the $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ compound the $92.5 \% \mathrm{Nb}_{2} \mathrm{O}_{5}$ compositions was formulated from two different mixtures (see Table I).
The quenching technique was used to obtain subsolidus and liquidus data on samples sealed in Pt tubes. Quenched samples were examined with the binocular and polarizing microscopes and by X-ray powder diffractometry (Ni-filtered $\mathrm{CuK} \alpha$ radiation, $\lambda=1.54050 \AA$ ) using a high-angle Geiger-counter diffractometer. The technique of sample preparation as well as the apparatus and method liave been described in previous publications (14). Some solidus and liquidus values were obtained also by differential thermal analysis using a commercial DTA apparatus.

Temperatures were measured with a Pt vs $90 \mathrm{Pt}: 10 \mathrm{Rh}$ calibrated thermocouple wire and are given on the International Practical Temperature Scale of 1968 (15). During the course of the experiments the thermocouple was checked against the melting point of gold $\left(1064.4^{\circ} \mathrm{C}\right)$ and of barium disilicate $\left(1422^{\circ} \mathrm{C}\right)$.


FIG. 1. Partial phase equilibrium diagram for the system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$.
--no melting; --partial melting; 0 -complete melting. $\triangle-$ Solidus and/or liquidus determined by DTA.
$\mathrm{L}-1: 1=$ low-temp. polymorph of $\mathrm{NbPO}_{5} ; \mathrm{H}-1: 1=$ high temp. polymorph of $\mathrm{NbPO}_{5}$ (isostructural with $\mathrm{TaPO}_{5}$ ); 9:1 (ss) = $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ (solid solution); ' $22: 1$ ' $s s=22 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ solid solution.

TABLE 1
Experimental Data ${ }^{\underline{I} /}$ for Compositions
in the Binary System $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$

| Composition ${ }^{\text {/ }}$ |  | Heat Treatment ${ }^{\text {/ }}$ |  | Results |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Nb}_{2} \mathrm{O}_{5}$ | $\mathrm{Pa}_{3} \mathrm{O}_{5}$ | Temp | Time | Physical Observation | X-Ray Diffraction Analyses ${ }^{\text {// }}$ |
| Mol \% | M01 \% | ${ }^{\circ} \mathrm{C}$ | hrs |  |  |
| 38.6 | 61.4 | 900 | 166 | no melting | 1:2+L-1:1 + [?] |
|  |  | 1000 | 95 | no melting | 1:2+L-1: 1 |
|  |  | 1255 | 2.3 | some melting | $\mathrm{L}-\mathrm{I}: \mathrm{I}+\mathrm{H}-1: 1(t r)$ |
|  |  | 1349 | 1 | considerable melting | H-1:1 |
| 42.6 | 57.4 | 1000 | 95 | no melting | $1: 2+[?]+$ L-1:1 |
|  |  | 1251 | 2 | some melting | L-1: $1+[?]$ |
|  |  | 1257 | 4 | some melting | $\mathrm{L}-1: 1+\mathrm{H}-1: 1+[?]$ |
|  |  | 1529 | 1 | considerable melting | H-1:1 |
| 50.7 | 49.3 | 900 | 166 | no melting | L-1:1 |
|  |  | 1225 | 4.5 | no melting | L-1: $1+9: 1$ |
|  |  | 1258 | 3 | no melting | H-1:1 $+9: 1$ |
|  |  | 1650 | 0.5 | some melting | $\mathrm{H}-1: 1+\left[\mathrm{L}-\mathrm{Nb}_{2} \mathrm{O}_{5}\right]^{5 /}$ |
| 60.0 | 40.0 | 1000 | 5 | no melting | L-1:1+9:1 |
|  |  | 1250 | 22 | no melting | L-1: $1+9: 1$ |
|  |  | 1260 | 17 | no melting | $\mathrm{L}-\mathrm{l}: 1+9: 1+\mathrm{H}-\mathrm{l}: \mathrm{l}$ |
|  |  | 1371 | 2 | slight melting | H-1: $1+9: 1$ |
|  |  | 1544 | 0.75 | nearly melted | - |
|  |  | 1550 | 1.75 | melted | [ $\mathrm{H}-1: 1$ ] |
| 64.5 | 35.5 | 900 | 15 | no melting | H-1: $1 \underline{6 /}+9: 1$ |
|  |  | 1104 | 1 | no melting | L-I: $1+9: 1+\mathrm{H}-\mathrm{I}: \mathrm{I}(\mathrm{tr})$ |
|  |  | 1360 | 1 | slight melting | H-1: $1+9: 1$ |
|  |  | 1426 | 1 | nearly melted | $\mathrm{H}-\mathrm{l}: 1 \mathrm{l}+\left[\mathrm{L}-\mathrm{Nb}_{2} \mathrm{O}_{5}\right]$ |
|  |  | 1446 | 1 | melted | $[\mathrm{H}-1: 1+9: 1]$ |
| 66.4 | 33.6 | 900 | 166 | no melting | L-1:1 + 9: 1 |
|  |  | 1349 | 1.5 | no melting | H-1:1 $+9: 1$ |
|  |  | 1369 | 1.5 | considerable melting | $\mathrm{H}-1: 1+\left[\mathrm{L}-\mathrm{Nb}_{2} \mathrm{O}_{5}+9: 1\right]$ |
|  |  | 1401 | 1.5 | melted | $\left[\mathrm{H}-\mathrm{l}: 1+\mathrm{L}-\mathrm{Nb}_{2} \mathrm{O}_{5}\right]$ |
| 75.0 | 25.0 | 1000 | 5 | no melting | 9:1+L-1:1 |
|  |  | 1248 | 3 | no melting | 9:1 + L-1:1 |
|  |  | 1261 | 20 | no melting | $9: 1+\mathrm{H}-1: 1+\mathrm{L}-1: 1$ |
|  |  | 1261 |  |  |  |
|  |  | 1229 | 205 |  | $9: 1+\mathrm{L}-1: 1+\mathrm{H}-1: 1(\mathrm{tr})^{7 /}$ |




```
I/ Only definitive data are given; figure 1 shows all of the heat treatments.
    present at the elevated temperature are enclosed in brackets.
```

```
    Except as stated otherwise, analyzed value for Nb
    Specimens quencned in sealed Pt tubes.
    Phases are listed in order of amount present at room temperature and are
    designated by the numerical ratios of Nb}\mp@subsup{N}{2}{}\mp@subsup{O}{5}{}\mathrm{ to }\mp@subsup{P}{2}{}\mp@subsup{O}{5}{\prime}\mathrm{ . Phases not necessarily
    Low }\mp@subsup{\textrm{Nb}}{2}{}\mp@subsup{\textrm{O}}{5}{}\mathrm{ crystallizes from quenched liquid.
    H-1:1 is formed metastably.
    Shows reversibility between H-1:1 and L-1:1.
    Formulated from Nb
    Formulated from Nb
    Isostructural with phase at 9:1 composition.
    Shows reversibility between '22:1' ss and 9:1 ss + H-Nb
    Shows reversibility between '22:1' ss + H-Nb}\mp@subsup{2}{}{\prime}\mp@subsup{O}{5}{\prime}\mathrm{ and '9:1' ss (Paint (a), Fig. 2).
    Shows reversibility between '22:I' ss + H-Nb}\mp@subsup{|}{2}{\prime}\mp@subsup{\textrm{O}}{5}{}\mathrm{ and 9:1 ss + H-Nb}\mp@subsup{\textrm{O}}{5}{\prime}\mathrm{ (Point (c), Fig. 2)
```


## III. Results and Discussion

### 3.1. Phase Diagram

The partial phase diagram for the system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ as determined in sealed Pt tubes is shown in Fig. 1. Table I lists the compositions studied, the important heat treatments, and the phases identified by X-ray analysis. The outstanding feature is the compound $\mathrm{NbPO}_{5}$, with a melting point greater than $1650^{\circ} \mathrm{C}$. However, this compound
when heated in air by induction to $1650^{\circ} \mathrm{C}$ completely volatilized. The system shows no indication of liquid immiscibility, and three incongruently melting solid solution phases appear in the niobiumrich portion: 9:1 ss, '22:1' ss, and '9:1' ss (Fig. 2).

Experimental difficulties were encountered in all regions except that between $\mathrm{NbPO}_{5}$ and $9 \mathrm{Nb}_{2} \mathrm{O}_{5}$. $\mathrm{P}_{2} \mathrm{O}_{5}$. Compositions rich in $\mathrm{P}_{2} \mathrm{O}_{5}$ hydrated rapidly at low temperatures, and at high temperatures they


Fig. 2. Phase equilibrium diagram of the subsystem $\mathrm{Nb}_{2} \mathrm{O}_{5}-9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$, enlarged.
---no melting; -partial melting; $\bigcirc$-complete melting.
$9: 1 s s=9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ solid solution; '9:1' $s s=$ phase isostructural with $9: 1$ ss phase; '22:1'ss=22 $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ solid solution. (a), (b), (c) = reversibility experiments (see Table I and text).
lost $\mathrm{P}_{2} \mathrm{O}_{5}$ by volatilization. The phase designated ' $9: 1$ ' ss, at about 3.6 mole $\% \mathrm{P}_{2} \mathrm{O}_{5}$, was stable over only $80^{\circ} \mathrm{C}$ and was isostructural with $9: 1$ ss of the nominal composition. However, no differences in any of the X-ray powder patterns were detected between the two phases. The width of the $9: 1 \mathrm{ss}$ phase (about 4.5 mole $\%$ ) was determined from the single-phase compositional region and not by change in X-ray $d$ spacings. As noted by Roth et al. (8), the size of the tetrahedral atom in $\mathrm{PNb}_{9} \mathrm{O}_{25}$ ( $9: 1$ ) is not significantly different from the one in the high temperature form of $\mathrm{Nb}_{2} \mathrm{O}_{5}$. In the latter case the tetrahedral atom is Nb instead of P . Accordingly, it is not unexpected that the substitution of Nb for P in the $9: 1$ solid-solution phases is not reflected in a detectable change in the unit cell dimensions.

Several reversibility experiments were tried in order to verify the stability relations of the ' $9: 1$ ' ss and the ' $22: 1$ ' ss phases. Thus the composition 3.6 mole $\% \mathrm{P}_{2} \mathrm{O}_{5}$ (Fig. 2) heated at $1443^{\circ}$ for 2 hr formed the ' $22: 1$ ' phase. On reheating at $1380^{\circ} \mathrm{C}$ for 18 hr [point (a)], single phase ' $9: 1$ ' ss was obtained. Another sample of the same composition showing single phase ' $22: 1$ ' ss, when heated at $1299^{\circ} \mathrm{C}$ for 88 hr [point (b)] yielded the $9: 1$ ss phase and $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$. Likewise, a sample of composition 2.5 mole $\% \mathrm{P}_{2} \mathrm{O}_{5}$ showing ' $22: 1$ ' ss and $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$
phases after heating at $1428^{\circ} \mathrm{C}$ for 19 hr yielded $9: 1$ ss and $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ upon reheating at $1250^{\circ} \mathrm{C}$ for 114 hr [point (c)].

Kurbatov and Demenov in 1956 (2) reported the compound $2 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$, and Shtin (9) in his study of niobium phosphates and their hydrates reported the dehydration of $2 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ at $980^{\circ} \mathrm{C}$ to give $2 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}$. He presented an unindexed X -ray powder pattern, which the present authors find to be a mixture of several phases. Haider in 1964 (4) found by X-ray examination that specimens with compositions near the molar ratio of $2 \mathrm{Nb}_{2} \mathrm{O}_{5}$ to $\mathrm{P}_{2} \mathrm{O}_{5}$ were comprised of mixtures of $\mathrm{NbPO}_{5}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$. Figure 1 shows that the composition $2 \mathrm{Nb}_{2} \mathrm{O}_{5}: \mathrm{P}_{2} \mathrm{O}_{5}$ is located in a two phase equilibrium region consisting of $\mathrm{NbPO}_{5}$ and $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}\left(\operatorname{not} \mathrm{Nb}_{2} \mathrm{O}_{5}\right)$.

### 3.2. Compounds in the System

$\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{5}\left(\mathrm{Nb}_{2} \mathrm{P}_{4} \mathrm{O}_{15}\right)$. Haider (4) prepared the compound by precipitation methods and by reaction of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ with ammonium phosphate or phosphoric acid at high temperature. He indexed the X-ray diffraction pattern on the basis of a cubic cell, and the compound was found to be isomorphous with zirconium pyrophosphate $\left(\mathrm{ZrP}_{2} \mathrm{O}_{7}\right)$ by comparison with the X-ray data of Levi and Peyronel
TABLE II
Compounds in the System $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$

| Compound | Reference | Unit Cell Dimensions" |  |  |  | $X R$ Density | Structure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $a$ | $b$ | $c$ | $\beta$ |  |  |
| $\begin{aligned} & \mathrm{Nb}_{2} \mathrm{P}_{4} \mathrm{O}_{15} \\ & (1: 2) \end{aligned}$ | Haider (1963) <br> Levin \& Roth (1969) | $\begin{aligned} & \quad A \\ & 8.073 \pm 0.005 \\ & 8.066 \end{aligned}$ | A | A |  | $\begin{gathered} \mathrm{g} \mathrm{~cm}^{-3} \\ 3.462(Z=2) \end{gathered}$ | $\begin{aligned} & \left(\mathrm{ZrP}_{2} \mathrm{O}_{7}\right)_{4} \\ & \text { pseudocubic } \end{aligned}$ |
| $\begin{aligned} & \text { L-NbPO } \\ & (1: 1) \end{aligned}$ | Haider (1963) <br> Longo \& Kierkegaard (1966) <br> Levin \& Roth (1969) | $\begin{aligned} & 6.394 \\ & 6.3873 \pm 0.001 \\ & 6.382 \pm 0.001 \end{aligned}$ |  | $\begin{aligned} & 4.103 \\ & 4.1037 \pm 0.0008 \\ & 4.101 \pm 0.001 \end{aligned}$ |  | $\begin{aligned} & 4.032(Z=2) \\ & 4.044 \\ & 4.053 \end{aligned}$ | $\mathrm{NbO}_{6}+\mathrm{PO}_{4}$ |
| $\mathrm{H}-\mathrm{NbPO}_{5}$ | Levin \& Roth (1969) | $11.257 \pm 0.002$ | $5.276 \pm 0.001$ | $6.606 \pm 0.001$ | $90^{\circ} 17^{\prime} \pm 1^{\prime}$ | $3.452(Z=4)$ |  |
| TaPO5 | Levin \& Roth (1969) | $11.272 \pm 0.001$ | $5.281 \pm 0.001$ | $6.621 \pm 0.001$ | $90^{\circ} 13^{\prime} \pm 1^{\prime}$ | 4.920 |  |
| $\begin{aligned} & \mathrm{Nb}_{9} \mathrm{PO}_{25} \\ & (9: 1) \end{aligned}$ | Waring \& Roth (1964) <br>  <br> Andersson (1965) <br> Levin \& Roth (1969) | $\begin{aligned} & 15.60 \\ & 15.60 \\ & 15.638 \pm 0.001 \end{aligned}$ |  | $\begin{aligned} & 3.828 \\ & 3.828 \\ & \\ & 3.827 \pm 0.001 \end{aligned}$ |  | $\begin{aligned} & 4.52(Z=2) \\ & 4.496 \end{aligned}$ | $\mathrm{NbO}_{6}$ blocks $3 \times 3 \times \infty$ |
| $\begin{aligned} & \mathrm{Nb}_{44} \mathrm{P}_{2} \mathrm{O}_{115} \\ & (22: 1) \end{aligned}$ | Levin \& Roth (1969) | $22.238 \pm 0.006$ | $3.827 \pm 0.001$ | $25.91 \pm 0.01$ | $93^{\circ} 7^{\prime} \pm 2^{\prime}$ | $4.516(Z=1)$ | $\begin{aligned} & \mathrm{NbO}_{6} \text { blocks } \\ & 3 \times 3 \times \infty \\ & 3 \times 4 \times \infty \end{aligned}$ |
| $\begin{aligned} & \mathrm{Nb}_{2} \mathrm{O}_{5} \\ & \left(\mathrm{NbNb}_{27} \mathrm{O}_{70}\right) \end{aligned}$ | Gatehouse \& Wadsley (1964) | 21.16 | 3.822 | 19.35 | $119^{\circ} 50^{\prime}$ | $4.55(Z=14)$ | $\begin{aligned} & \mathrm{NbO}_{6} \text { blocks } \\ & 3 \times 4 \times \infty \\ & 3 \times 5 \times \infty \end{aligned}$ |
| ${ }^{a}$ In the present work unit cell values and their standard errors were determined by a least-squares calculation made on the Nat. Bur. Stand. electr computer according to a program developed by H. 'I. Evans, Jr., D. E. Appleman, and D. S. Handwerker, Least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method; presented at Amer. Crystal Assoc. Annual Meeting, Cambridge, Mass., 1963; Prog 42-43. Lattice constant errors are based on the least-squares refinement of the variance-covariance matrix derived from the unweighted $\Delta \theta$ residuals. <br> ${ }^{6}$ Approximate cell unit after J. G. Allpress, C.S.I.R.O., Melbourne, Australia. |  |  |  |  |  |  |  |

(16) as well as with those of a freshly prepared sample of $\mathrm{ZrP}_{2} \mathrm{O}_{7}$. Haider noted that the contents of a unit cell of niobium pyrophosphate $\left(\mathrm{Nb}_{4} \mathrm{P}_{8} \mathrm{O}_{30}\right)$ contains two more oxygen atoms than that of zirconium pyrophosphate ( $\mathrm{Zr}_{4} \mathrm{P}_{8} \mathrm{O}_{28}$ ). He suggested the possibility of the presence of tetravalent niobium forming the isostructural compound $\mathrm{NbP}_{2} \mathrm{O}_{7}$. The present study does not confirm the cubic symmetry of the compound either by the X-ray data or by microscopic examination. However, the X-ray data could be indexed on the basis of a pseudocubic cell, with $a=8.066 \AA$, very close to the $8.073 \AA$ value given by Haider (Table II). Table III lists the X-ray powder data.

Seifer and Tananaev (10) reported preparation of $3 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot 5 \mathrm{P}_{2} \mathrm{O}_{5}$ by solution methods. Their identification was solely by chemical analysis, and attempts by the present authors to duplicate their procedure were unsuccessful.
$\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}\left(\mathrm{NbPO}_{5}\right)$. Hahn in 1951 (1) was the first one to prepare a stable niobium phosphate compound of this composition, and he reported an

TABLE III
X-Ray Powder Diffraction
Data ${ }^{a}$ for $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{5}$
$(\mathrm{CuK} \alpha$ radiation $\lambda=1.54050 \AA)$

| $h k l^{b}$ | $d(A)$ | $I / I_{0}(\%)$ |
| :--- | :---: | ---: |
| $\cdots 111$ | 4.662 | 23 |
|  | 4.316 | 5 |
| 200 | 4.035 | 100 |
| 210 | 3.606 | 35 |
| 211 | 3.294 | 31 |
| 220 | 2.850 | 36 |
| 300 | 2.687 | 3 |
| 311 | 2.431 | 43 |
| 222 | 2.329 | 10 |
| 320 | 2.237 | 4 |
| 400 | 2.016 | 5 |
| 410 | 1.9568 | 5 |
| 411 | 1.9019 | 4 |
| 331 | 1.8503 | 11 |
| 420 | 1.8040 | 19 |
| 421 | 1.7602 | 3 |
| 422 | 1.6461 | 14 |
| 511 | 1.5520 | 18 |

[^0]unindexed X-ray powder pattern. Haider (4) established the tetragonal unit cell for low $\mathrm{NbPO}_{5}$ ( $\mathrm{L}-\mathrm{NbPO}_{5}$ ) and showed that this was the phase obtained by Hahn. Longo and Kiekegaard (6) determined the crystal structure. A comparison of the unit cell dimensions obtained by the various investigators is given in Table II.

Haider also reported that at $1070^{\circ} \mathrm{C} \quad \mathrm{Nb}_{2} \mathrm{O}_{5}$. $2 \mathrm{P}_{2} \mathrm{O}_{5}$ lost $\mathrm{P}_{2} \mathrm{O}_{5}$ by volatilization yielding $\mathrm{NbPO}_{5}$ structurally identical to $\mathrm{TaPO}_{5}$ rather than to the normal tetragonal $\mathrm{NbPO}_{5}$. On further heating to $1250^{\circ} \mathrm{C}$, the $\mathrm{TaPO}_{5}$ form of $\mathrm{NbPO}_{5}$ changed to the tetragonal form. In the present work the high form of $\mathrm{NbPO}_{5}\left(\mathbf{H}-\mathrm{NbPO}_{5}\right)$ has been indexed ${ }^{1}$ on the basis of a monoclinic unit cell.

Tantulum phosphate ( $\mathrm{TaPO}_{5}$ ) was made by melting together high purity $\mathrm{Ta}_{2} \mathrm{O}_{5}$ in an excess of $\mathrm{KH}_{2} \mathrm{PO}_{4}$, leaching the product in water, and heating the remaining residue in air at $1503^{\circ} \mathrm{C}$. High $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{TaPO}_{5}$ are isostructural, as seen by a comparison of the X-ray powder patterns given in Table IV, thus confirming Haider's observation. However, contrary to his findings, the present work showed that tetragonal $\mathrm{NbPO}_{5}$ is the stable lowtemperature form, and monoclinic $\mathrm{NbPO}_{5}\left(\mathrm{TaPO}_{5}\right.$ type) is the stable high-temperature form.

Brown and Hummel (5) in 1965 found that $\mathrm{NbPO}_{5}$ underwent an irreversible transformation at $985 \pm$ $25^{\circ} \mathrm{C}$, and they listed the X-ray powder data for $\alpha$ and $\beta$ forms. Inspection of their data shows that the $\alpha$ form was probably mostly $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{P}_{2} \mathrm{O}$, and that the $\beta$ form was a mixture of low $\mathrm{NbPO}_{5}$ and $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$. Apparently, in the preparation of $\mathrm{NbPO}_{5}$ from the $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ starting materials, $\mathrm{Nb}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{5}$ was formed at low temperature. With subsequent heating at about $1000^{\circ} \mathrm{C}$, the mixture lost $\mathrm{P}_{2} \mathrm{O}_{5}$ by volatilization, and the average composition moved into the two-phase region of $\mathrm{NbPO}_{5}$ and $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$.
The powder diffraction file (17) contains four patterns of $\mathrm{NbPO}_{5}$ : two by Brown and Hummel (card Nos. 19-868 and 19-869), one by Hahn (No. 5-0427), and one by Longo and Kierkegaard (No. 19-866). All but the last pattern should be discarded.
$9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}\left(\mathrm{Nb}_{9} \mathrm{PO}_{25}\right)$. This tetragonal phase was first indexed by Waring and Roth (7) who discovered other isostructural phases of the type $\mathrm{ANb}_{9} \mathrm{O}_{25}$ and $\mathrm{ATa}_{9} \mathrm{O}_{25}$, where A is one or another of the small pentavalent ions $\mathrm{As}, \mathrm{V}$, and P . The phases are apparently isostructural with $\mathrm{Ta}_{2} \mathrm{O}_{5}$. $2 \mathrm{Nb}_{2} \mathrm{O}_{5}$. The crystal structure of $\mathrm{Nb}_{9} \mathrm{PO}_{25}$ was

[^1]TABLE 4

| ${ }^{2 \theta} \mathrm{calc}$ | X-Ray Powder Diffraction Data for IsostructuralCompounds $\mathrm{H}-\mathrm{NbPO}_{5}$ and $\mathrm{TaPO}_{5}$ (CuK $\alpha$ radiation $\lambda=1.54050$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2 \theta_{\mathrm{obs}}$ | I/Io | $d(A)$ | hkI ${ }^{\text {a }}$ | d(A) | I/Io | $2 \theta_{\text {obs }}$ | ${ }^{2 \theta}$ calc |
| 15.51 | 15.50 | 14 | 5.71 | 101 | 5.72 | 13 | 15.48 | 15.48 |
| 15.58 | 15.60 | 19 | 5.68 | 101 | 5.70 | 24 | 15.54 | 15.53 |
| 15.73 | 15.75 | 56 | 5.62 | 200 | 5.63 | 49 | 15.74 | 15.71 |
| 20.77 | 20.74 | 59 | 4.28 | 201 | 4.29 | 56 | 20.72 | 20.72 |
| 21.54 | 21.54 | 100 | 4.122 | 011 | 4.130 | 100 | 21.50 | 21.51 |
| 22.98 | 22.99 | 89 | 3.865 | 111 | 3.875 | 53 | 22.93 | 22.94 |
| -- | -- | -- | -- | 210 | 3.857 | 23 | 23.04 | 23.06 |
| 26.74 | 26.78 | 65 | 3.326 | 211) | 3.331 | 56 | 26.74 | 26.71 |
| 26.83 | 26.83 | 67 | 3.320 | 211 | -- | -- | -- | -- |
| 27.25 | 27.27 | 30 | 3.267 | 3017 | 3.272 | 16 | 27.23 | 27.22 |
| 27.37 | 27.35 | 25 | 3.258 | 301 | 3.263 | 14 | 27.31 | 27.31 |
| -- | -- | -- | - | 102 | 3.173 | 5 | 28.10 | 28.10 |
| 31.31 | 31.32 | 9 | 2.854 | 202 | 2.859 | 8 | 31.26 | 31.26 |
| 31.45 | 31.47 | 11 | 2.840 | 202 | 2.850 | 10 | 31.36 | 31.36 |
| 31.77 | 31.78 | 7 | 2.813 | 400 | -- | -- | -- | -- |
| 32.18 | 32.21 | 20 | 2.777 | 311 | 2.780 | 20 | 32.17 | 32.15 |
| 32.29 | 32.30 | 19 | 2.769 | 311 | 2.773 | 19 | 32.25 | 32.23 |
| 32.91 | 32.94 | 49 | 2.717 | 112 | -- | -- | -- | -- |
| 32.98 | 32.98 | 52 | 2.714 | 112 | 2.720 | 53 | 32.90 | 32.90 |
| 33.96 | 33.96 | 40 | 2.638 | 020 | 2.639 | 29 | 33.94 | 33.92 |
| 34.55 | 34.54 | 11 | 2.595 | $40 \overline{1}$ | 2.595 | 17 | 34.53 | 34.52 |
| 34.68 | 34.67 | 12 | 2.585 | 401 | 2.590 | 21 | 34.61 | 34.61 |
| 35.73 | 35.74 | 11 | 2.510 | 212 | 2.514 | 12 | 35.69 | 35.68 |
| 35.86 | 35.82 | 10 | 2.505 | 212 | 2.509 | 14 | 35.76 | 35.77 |
| 36.15 | 36.14 | 39 | 2.483 | 410 | 2.486 | 48 | 36.10 | 36.10 |
| 37.63 | 37.65 | 7 | 2.387 | 220 | 2.391 | 15 | 37.58 | 37.59 |
| 40.08 | 40.10 | 6 | 2.248 | $\{22 \overline{1}$ | 2.250 | 14 | 40.04 | 40.04 |
|  |  |  |  | 221 | 2.246 | 10 | 40.11 | 40.08 |
| 41.72 | 41.72 | 8 | 2.163 | 103 | 2.167 | 14 | 41.64 | 41.63 |
| -- | -- | -- | -- | 103 | 2.164 | 14 | 41.70 | 41.70 |
| -- | -- | -- | -- | 022 | 2.064 | 5 | 43.83 | 43.82 |

TABLE 4 (continued)

|  |  |  |  | ( $12 \overline{2}$ | 2.032 | 10 | 44.56 | 44.57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 44.68 | 44.67 | 14 | 2.027 | \{122 | 2.030 | 6 | 44.60 | 44.61 |
| 46.85 | 46.85 | 14 | 1.9376 | 223 | 1.9391 | 8 | 46.81 | 46.79 |
| 46.96 | 46.95 | 15 | 1.9337 | 222 | 1.9364 | 14 | 46.88 | 46.87 |
| 48.80 | 48.79 | 12 | 1.8650 | 502 | 1.8671 | 9 | 48.73 | 48.74 |
| 49.04 | 49.06 | 15 | 1.8553 | 502 | 1.8603 | 10 | 48.92 | 48.93 |
| 49.23 | 49.21 | 14 | 1.8500 | $42 \overline{1}$ | 1.8522 | 14 | 49.15 | 49.18 |
| 49.33 | 49.34 | 10 | 1.8454 | 421 | 1.8486 | 16 | 49.25 | 49.25 |
| 50.41 | 50.41 | 17 | 1.8088 | 322 | 1.8111 | 17 | 50.34 | 50.35 |
| 50.55 | 50.55 | 22 | 1.8041 | 322 | 1.8071 | 22 | 50.46 | 50.45 |
| 50.97 | 50.94 | 20 | 1.7912 | 313 | 1.7932 | 18 | 50.88 | 50.89 |
| 51.18 | 51.18 | 19 | 1.7834 | 313 | 1.7879 | 22 | 51.04 | 51.05 |
| 51.67 | 51.68 | 16 | 1.7673 | 610 | 1.7698 | 12 | 51.60 | 51.60 |
| 53.56 | 53.54 | 8 | 1.7102 | 6117 | 1.7120 | 8 | 53.48 | 53.50 |
| 53.70 | 53.70 | 15 | 1.7055 | 611 | 1.7084 | 11 | 53.60 | 53.60 |
| 53.90 | 53.89 | 16 | 1.6999 | 031 | 1.7014 | 14 | 53.84 | 53.85 |
| 54.58 | 54.60 | 11 | 1.6795 | $\left\{\begin{array}{l}131 \\ 131\end{array}\right.$ | 1.6809 | 8 | 54.55 | 54.58 |
| 54.84 | 54.86 | 24 | 1.6721 | 123) | 1.6749 | 25 | 54.76 | 54.75 |
| -- | -- |  | -- |  |  |  |  |  |
| -- | - | - | -- | 004 | 1.6554 | 4 | 55.46 | 55.47 |
| 56.21 | 56.20 | 6 | 1.6354 | $\left\{\begin{array}{l} 10 \overline{4} \\ 60 \overline{2} \end{array}\right.$ | -- | -- | -- | -- |
| -- |  | -- | -- | $104\}$ | 1.6370 | 6 | 56.14 | 56.15 |
| -- | -- | -- | -- | 23 I | 1.6300 | 8 | 56.40 | 56.44 |
| 56.54 | 56.54 | 11 | 1.6263 | 231 | 1.6285 | 10 | 56.46 | 56.47 |
| 59.00 | 59.00 | 6 | 1.5643 | 701 | 1.5652 | 8 | 58.96 | 58.93 |
| 59.11 | 59.13 | 9 | 1.5611 | 701 | 1.5643 | 10 | 59.00 | 59.04 |

$$
\begin{aligned}
\text { Based on monoclinic cell: } & \text { For } \mathrm{H}_{\mathrm{A}}-\mathrm{Nb}_{2} \mathrm{O}_{5}, a=11.257, b=5.276, c=6.606 \AA, \beta=90^{\circ} 17^{\prime} ; \\
& \text { For } \mathrm{TaPO}_{5}, \quad a=11.272, b=5.281, c=6.621 \AA, \beta=90^{\circ} \mathrm{L} 3^{\prime} \\
& (\text { See Table } 2, \text { footnote } a) .
\end{aligned}
$$

determined by Roth et al. (8). The unit cell dimensions determined in the present work agree with those of Waring and Koth (Table II). As noted earlier, no variation in unit cell dimensions with composition were detected for the $9: 1 \mathrm{ss}$ and '9:1'ss phases.
$22 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}\left(\mathrm{Nb}_{44} \mathrm{P}_{2} \mathrm{O}_{115}\right)$. This phase was indexed ${ }^{2}$ on the basis of a monoclinic unit cell (Table V).
${ }^{2}$ John G. Allpress, CSIRO, University of Melbourne, Australia, determined the approx unit cell by using electron diffraction and lattice image techniques.

TABLE V
X-Ray Powder Diffraction Data for $22 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}{ }^{a}$ ( $\mathrm{CuK} \alpha$ radiation $\lambda=1.54050 \AA$ )

| $h k l^{\text {b }}$ | $d(A)$ | $I / I_{0}(\%)$ | $2 \theta_{\text {obsd }}$ | $2 \theta_{\text {calcd }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 002 | 12.95 | 7 | 6.82 | 6.83 |
| 200 | 11.10 | 6 | 7.95 | 7.96 |
| 400 | 5.56 | 6 | 15.93 | 15.95 |
| 402 | 5.003 | 12 | 17.71 | 17.71 |
| 205 | 4.789 | 20 | 18.51 | 18.50 |
| 111 | 3.728 | 44 | 23.85 | 23.85 |
| $\overline{1} 12$ | 3.630 | 8 | 24.50 | 24.50 |
| 207 | 3.560 | 49 | 24.98 | 24.95 |
| 602 | 3.506 | 76 | 25.38 | 25.37 |
| $\overline{1} 13$ | 3.446 | 12 | 25.68 | 25.67 |
| 311 | 3.358 | 34 | 26.52 | 26.51 |
| $\overline{1} 14$ | 3.270 | 9 | 27.25 | 27.24 |
| 604 | 3.145 | 9 | 28.38 | 28.41 |
| 407 | 3.001 | 11 | 29.75 | 29.73 |
| 511 | 2.868 | 24 | 31.16 | 31.14 |
| $\overline{1} 16$ | 2.853 | 41 | 31.33 | 31.34 |
| 513 | 2.720 | 17 | 32.90 | 32.91 |
| 316 | 2.703 | 17 | 33.11 | 33.12 |
| 804 | 2.501 | 16 | 35.87 | 35.86 |
| 118 | 2.444 | 9 | 36.74 | 36.74 |
| 711 | 2.421 | 5 | 37.10 | 37.09 |
| 318 | 2.316 | 46 | 38.86 | 38.88 |
| 10,0,4 | 2.067 | 24 | 43.76 | 43.78 |
| 4,0,12 | 2.049 | 34 | 44.16 | 44.19 |
| 020 | 1.914 | 100 | 47.46 | 47.47 |
| 12,0,3 | 1.830 | 13 | 49.80 | 49.79 |

[^2]
### 3.3. The Block Principle in Niobate Structures

Magneli (18) introduced the concept of homologous series of transition metal oxides in his study of slightly reduced molybdenum and tungsten oxides. Roth and Wadsley (12) extended and applied this concept to homologous series of compound formation in niobate systems containing an additional small highly charged cation, such as $\mathrm{Ti}, \mathrm{P}, \mathrm{W}$. The structures all contain niobium in octahedral coordination with oxygen atoms. The octahedra form blocks ( $\mathrm{ReO}_{3}$ type) with finite numbers of octahedra in two dimensions but with infinite numbers in the third. The blocks condense upon themselves by edge-sharing with other blocks at different levels along the short axis, in such a way that tetrahedral holes are formed at the block
junction. These tetrahedral holes may or may not be partially filled with atoms such as $\mathrm{Ti}, \mathrm{Nb}, \mathrm{P}, \mathrm{W}$.

Several of the compounds in the $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ system illustrate the block principle. The structure of the compound $\mathrm{Nb}_{9} \mathrm{PO}_{25}$ was predicted from these crystallochemical principles and was verified and refined by Fourier and least-squares single-crystal analyses (8). It contains blocks of $\left[\mathrm{NbO}_{6}\right]$ octahedra, 3 octahedra wide, three long and infinite in the third dimension. These blocks are joined to similar blocks at $1 / 2 c$ by sharing octahedral edges, and some of the tetrahedral positions at the junctions are occupied by phosphorus atoms. This compound may be represented by the general structural formula $\mathrm{B}_{n m+1} \mathrm{O}_{3 n m-(n+m)+4}[(12)$, Part IV (Table 2, p. 46)], in which $n$ and $m$ represent the number of octahedra in the width and length of a block, respectively. For the $3 \times 3$ block, as in $\mathrm{Nb}_{9} \mathrm{PO}_{25}$, the formula reduces to $\mathrm{B}_{10} \mathrm{O}_{25}$ or $\left(\mathrm{B}, \mathrm{B}_{9}\right) \mathrm{O}_{25}$ with one of the ten cations in tetrahedral coordination.

A limiting structure represented by the above general formula would occur for blocks of single octahedra, in which case both $n$ and $m$ would be one. The structural formula reduces to $\mathrm{B}_{2} \mathrm{O}_{5}\left(\mathrm{~B}, \mathrm{BO}_{5}\right)$ which corresponds to the compound $\mathrm{NbPO}_{5}$. This compound contains chains of corner-shared $\left[\mathrm{NbO}_{6}\right]$ octahedra running parallel to the tetragonal $c$ axis. Tetrahedra of $\left[\mathrm{PO}_{4}\right]$ link the chains together to give a three-dimensional network ( 6 ).

The crystal structure of high $\mathrm{Nb}_{2} \mathrm{O}_{5}$ was determined by Gatehouse and Wadsley (19). It contains 14 molecules to the unit cell, and one of the 28 niobium atoms is in tetrahedral coordination. The structure consists of two sets of octahedral blocks. At one level these blocks are 3 octahedra wide by 5 long and form slabs running through the structure by edge sharing on both sides. At the other level isolated $3 \times 4$ blocks join the slabs of $3 \times 5$ blocks by edge sharing, to form tetrahedral holes, which are partially filled with niobium atoms. The two sizes of blocks complicate the derivation of the general expression for the structural formula, which becomes the sum of the appropriate formulas for the two levels. The same general expression given above can be used to calculate the particular formula for the $3 \times 4$ block level, yielding $\mathrm{B}_{13} \mathrm{O}_{33}$. However, a different formula must be used for the level of $3 \times 5$ blocks, because they are joined together at the same level. The general formula [(12), Part IV (Table 2, p. 46)] is $\mathrm{B}_{n m} \mathrm{O}_{3 n m-(n+m)}$, which reduces to $\mathrm{B}_{15} \mathrm{O}_{37}$. Combining the two simplified formulas gives $\mathrm{B}_{28} \mathrm{O}_{70}$ (e.g., $\mathrm{Nb}, \mathrm{Nb}_{27} \mathrm{O}_{70}$ ).

Roth et al. (8) discuss the possible substitution of P for Nb in the high niobia structure. If the one
tetrahedrally coordinated niobium atom out of the 28 niobium atoms in the unit cell can be replaced by P , they reasoned that a solid solution might exist "between $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and some hitherto unsuspected phase $\mathrm{PNb}_{27} \mathrm{O}_{70}$, with the same structure and essentially identical unit cell dimensions." It was for this reason that the $27: 1$ molar ratio of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ : $\mathrm{P}_{2} \mathrm{O}_{5}$ was studied. This composition ( $3.6 \mathrm{~mole} \%$ $\mathrm{P}_{2} \mathrm{O}_{5}$, Fig. 2) produced the " $9: 1$ " ss phasc. Although there might be some question as to the existence of this phase on the equilibrium diagram, there is no doubt of a two-phase region between $\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ and the phase. The surprising fact is that phosphorous does not substitute for tetrahedrally coordinated niobium in $\mathrm{Nb}_{2} \mathrm{O}_{5}$ (as predicted) but rather niobium substitutes for tetrahedrally coordinated phosphous in $\mathrm{Nb}_{9} \mathrm{PO}_{25}$, as discussed earlier.

The phase designated as $22 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$, examined by Allpress ${ }^{2}$ gave an electron latlice image pattern showing it to consist of an intergrowth of isolated $3 \times 3$ and $3 \times 4$ blocks. Therefore, the same general structural formula $\mathrm{B}_{n n+1} \mathrm{O}_{3 n m-(n+m)+4}$ can be applied twice. For the $3 \times 3$ blocks, the formula reduces to $\mathrm{B}_{10} \mathrm{O}_{25}$; for the $3 \times 4$ blocks, to $\mathrm{B}_{13} \mathrm{O}_{33}$. Thus the structural formula for the compound is $\mathrm{B}_{10} \mathrm{O}_{25}+\mathrm{B}_{13} \mathrm{O}_{33}=\mathrm{B}_{23} \mathrm{O}_{58}$. The idealized structure consists of a block of corner-sharing octahedra three wide by three long and infinite in the third direction, joined by tetrahedrally coordinated P atoms to identical blocks, forming slabs through the structure. This structural element is identical to that of $\mathrm{Nb}_{9} \mathrm{PO}_{25}$. The other structural element is similar except that the blocks are $3 \times 4$ and that tetrahedral positions are occupied with Nb rather than $P$. The two structural elements alternate in a regular sequence. Theoretical unit cell dimensions from the idealized structure are as follows, in good agreement with the experimental values given in Table II: $a=22.0 \AA, b=3.8 \AA, c=25.9 \AA, \beta=$ $93.4^{\circ}, Z=2$. However, whereas the theoretical unit cell contents is $\mathrm{B}_{46} \mathrm{O}_{116}$, the actual atom composition is $\mathrm{B}_{46} \mathrm{O}_{115}\left(\mathrm{Nb}_{44} \mathrm{P}_{2} \mathrm{O}_{115}\right)$.

Although the explanation for this oxygen shortage is unknown, two other similar cases in the niobates have been reported. The compound designated $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{GeO}_{2}$ [7], apparently isostructural with $9 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$, shows an oxygen deficiency between the structural formula and the atomic formula. A similar discrepancy exists in the solid solution region between $8 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{WO}_{3}$ and $6 \mathrm{Nb}_{2} \mathrm{O}_{5} \cdot \mathrm{WO}_{3}$ in the system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ [(12), Part I]. Ncutron diffraction techniques, which might be able to locate oxygen vacancies in a large unit cell, could possibly be used to resolve the structure for these cases.

## References

I. R. B. Hahn, Phosphates of niobium and tantalum, J. Amer. Chem. Soc. 73, 5091-3 (1951).
2. D. I. Kurbatov and N. V. Demenov, Zh. Priklad Khim. 29, 1747 (1956); Engl. transl., J. Appl. Chem. U.S.S.R. 1877 (1956).
3. S. Z. Haider, Anal. Chim. Acta 24, 250 (1961).
4. S. Z. Haider, Niobium and tantalum phosphates, Proc. Pak. Acad. Sci. 1, 19-28 (1964).
5. J. J. Brown and F. A. Hummel, Reactions between ZnO and selected oxides of elements of groups IV and V , Trans. Brit. Ceram. Soc. 64, 419-437 (1965).
6. John M. Longo and Peder Kierkegatad, The crystal structure of $\mathrm{NbOPO}_{4}$, Acta Chim. Scand. 20, 7278 (1966).
7. J. L. Waring and R. S. Roth, Tetragonal phases of the general type $10 \mathrm{M}_{2} \mathrm{O}_{5} \cdot 90 \mathrm{M}_{2}^{\prime} \mathrm{O}_{5}$ apparently isostructural with $\mathrm{Ta}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{Nb}_{2} \mathrm{O}_{5}$, Acta Crystallogr. 17, Part 4, 455-6 (1964).
8. R. S. Roth, A. D. Wadsley, and S. Andersson, The crystal structure of $\mathrm{PNb}_{9} \mathrm{O}_{25},\left(\mathrm{P}_{2} \mathrm{O}_{5} \cdot 9 \mathrm{Nb}_{2} \mathrm{O}_{5}\right)$, Acta Crystallogr. 18, Part 4, 643-7 (1965).
9. A. P. Shtin, Niobium phosphates and their hydrates, Izv. Sib. Otd. Akad. Nauk S.S.S.R. No. 3, 68-74 (1961).
10. G. S. Seifer and I. V. Tananaev, Normal orthophosphates of niobium and tantalum, Zh. Neorg. Khim. 8, 63-65 (1963); Engl. transl., Russ J. Inorg. Chem. 30-32 (1963).
11. E. M. Levin, Structural interpretation of immiscibility in oxide systems: IV. Occurrence, extent and temperature of the monotectic, J. Amer. Ceram. Soc. 50, 29-38 (1967).
12. R. S. Roth and A. D. Wadsley, Multiple phase formation in the binary system $\mathrm{Nb}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$. I. Preparation and identification of phases, Acta Crystallogr. 19, 25-32 (1965); IV. The Block principle, Acta Crystallogr. 19, 42-47 (1965).
13. E. M. Levin, Phase equilibria in the system niobium pentoxide-boric oxide, J. Res. Nat. Bur. Stand. Sect. A 70, 11-16 (1966).
14. E. M. Levin, Phase equilibria in the system niobium pentoxide-germanium dioxide, J. Res. Nat. Bur. Stand. Sect. A 70, 5-10 (1966).
15. The international practical temperature scale of 1968 , Metrologia 5, 35-44 (1969).
16. G. R. Levi and G. Peyronel, Crystalographic structure of the isomorphous group ( $\mathrm{Si}^{\mathbf{4}^{+}}, \mathrm{Ti}^{4+}, \mathrm{Zr}^{4+}, \mathrm{Sn}^{4+}$, $\left.\mathrm{Hf}^{4+}\right) \mathrm{P}_{2} \mathrm{O}_{7}$, Z. Kristallogr. 92A, 190-209 (1935).
17. Powder Diffraction File, Diffraction Data Dept., ASTM Bldg. 1916 Race St., Philadelphia, Pa. 19103.
18. A. Magnélli, Structures of the $\mathrm{ReO}_{3}$ type with recurrent dislocations of atoms: Homologous Series of molybdenum and tungsten oxides, Acta Crystallogr. 6, 495-500 (1953).
19. B. M. Gatehouse and A. D. Wadsley, The crystal structure of the high-temperature form of niobium pentoxide, Acta Crystallogr. 17, 1545-1554 (1964).


[^0]:    ${ }^{a}$ Obtained in dry mount. Sample first heated to $600^{\circ} \mathrm{C}$ for 10 hr .
    ${ }^{b}$ Based on pseudocubic unit cell: $a=8.066 \AA$.

[^1]:    ${ }^{1}$ John G. Allpress, CSIRO, University of Melbourne, Australia, determined the approx unit cell by using electron diffraction techniques.

[^2]:    ${ }^{a}$ Heat treatment $1424^{\circ} \mathrm{C}$ for 70 hr for composition $96.4 \mathrm{Nb}_{2} \mathrm{O}_{5}: 3.6 \mathrm{P}_{2} \mathrm{O}_{5}$.
    ${ }^{b}$ Based on monoclinic cell: $a=22.238, b=$ 3.827, $c=25.91 \AA, \beta=93^{\circ} 7^{\prime}$ (see Table II, footnote $a$ ).

